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Abstract: Mimics of oligosaccharides capable of interfering with lectin activity are currently being pursued by a number 

of groups in an effort to produce tools for glycobiology and to design antagonists of medically relevant lectins. The field 

is reviewed in this chapter. After a brief overview of the state of the art, examples from our and others’ studies on the 

dendritic cell receptor DC-SIGN are illustrated. 
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INTRODUCTION 

 Glycans are by far the most abundant natural products. 
Together with nucleic acids, proteins and lipids they 
constitute the group of biologically essential macromolecules. 
They are not only an important source of metabolic energy, 
but are also widely expressed as glycoconjugates on the 
surface of cells where they play key roles in important 
biological processes [1-3]. In the past decade, the increased 
appreciation for the ubiquity of glycans and their ability to 
encode biochemical information has generated the field of 
chemical glycobiology [4]. Its main objective consists in 
understanding how chemical information is encoded in sugar 
structures, how this information is read out by sugar binding 
proteins (lectins), and how we can control/alter this flow of 
information by interfering with the sugar code. A major 
contribution to the understanding of the sugar code is 
expected to emerge from screening of glycan arrays [5] and 
from the use of chemoinformatic tools. Glycan-specific 
databases have been built [6] and data mining has begun [7]. 
Glycomimetic molecules that can disrupt the formation of 
sugar–protein complexes may be used in this context as 
probes of biological processes and may provide ideas for 
medicinal applications [8].

 

 So far, most of this work has been directed towards 
enzymes that tailor glycan determinants: glycosidases and 
glycosyltransferases. Inhibition of glycosidases has been 
particularly fruitful: azasugars of the nojirimycin family are 
well-established, general-purpose inhibitors [9]. Sialidase 
inhibitors have been developed in one of the first successful 
rational drug-design projects, [10] and are currently 
commercialized as anti-flu drugs under the commercial 
names of Relenza (Zanamivir) and Tamiflu (Oseltamivir).  
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Inhibition of glycosyltransferases, until very recently, has 
proven harder, mainly due to the lack of robust non-radiometric 
assay strategies to detect glycosylation, but important steps 
forwards are being made [11]. 

 Less is known about the inhibition of lectin-mediated 
sugar recognition. As opposed to sugar-processing enzymes, 
lectins are proteins that recognize glycans with high specificity, 
but lack enzymatic activity on their ligands. Lectins are 
implicated in cell-cell self-recognition processes, cell-
extracellular matrix interaction, gamete fertilization, embryonic 
development, cell growth, cell differentiation, cell signalling, 
cell adhesion and migration, apoptosis, immunomodulation 
and inflammation, host-pathogen interactions, glycoprotein 
folding and routing, mitogenic induction and homeostasis 
[12]. Thus, in principle, lectins can clearly be considered as 
potential targets for the development of new drugs [8a, 
13,14].

 
However, they have rarely been exploited for the 

discovery of novel therapeutic opportunities. In the past, 
medicinal chemists have mostly disregarded carbohydrates 
as a class of molecules for drug development. The high 
density of functional groups and the immense variety of 
complex structures of glycans [15] represent a great 
challenge for the development of antagonists. Furthermore, 
carbohydrates themselves are too hydrophilic to have good 
bioavailability. Only in some cases where oral availability is 
not required, such as the inhibition of �-glycosidases for the 
treatment of diabetes by voglibose, [15] the inhibition of 
viral neuraminidases for the treatment of influenza [10] or 
the inhibition of viral adhesion to epithelia, [16] 
carbohydrate-related compounds have been used by 
medicinal chemists as target for the design of new bioactives 
molecules. Additionally, the recognition of sugars by lectin 
is intrinsically a low-affinity process. Typically, lectins 
possess shallow binding sites, exposed on their surface and 
endowed with low affinity for individual, monovalent 
oligosaccharides. Nonetheless, they can display exquisite 
target specificity for certain cellular glycans. For example, 
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Galectin-1 specifically recognises a galactose residue but not 
a glucose residue [2a, 17]. 

 A further limitation for the application of carbohydrates 
as drugs is the lability of glycosidic bonds to hydrolytic 
enzymes (glycosidases) in vivo. This can be circumvented by 
developing new glycomimetic compounds able to mimic the 
biological activity of native glycans and to solve the negative 
features that limit the biological application of carbohydrates. 
Progresses in the development of glycomimetics targeted 
against sugar binding proteins (lectins) have been reviewed 
recently

 
[8,13,14].

 
Additional recent examples include 

glycomimetic antagonists of selectins, [18] of cholera toxin 
B, [19] of E. coli FimH binding to epithelial cells, [20]

 
MAG 

antagonists and other Siglec binding agents, [21] C-glycoside 
ligands of Pseudomonas aeruginosa PA-IL lectin [22].

 
In the 

present review, after describing some general characteristics 
of glycomimetic structures and of their design and to 
recapitulate some points about medically relevant lectins, we will 
describe some examples of design synthesis and characterization 
of monovalent and multivalent antagonists of the dendritic 
cell C-lectin DC-SIGN (dendritic cell-specific intercellular 
adhesion molecule 3-grabbing non integrin), [23] implicated 
in many infection processes. 

GLYCOMIMETIC STRUCTURES  

 Many modifications have been introduced in the structure 
of carbohydrates to upgrade the drug-like characteristics of 
this class of biomolecules and to generate glycomimetics. 
The main modifications have been directed to increase the 
stability of carbohydrates to enzymatic degradation. The 
endocyclic oxygen can be replaced by a carbon atom (cyclitols 
or carbasugars), a nitrogen atom (iminosugars), a sulfur atom 
(thiosugars) or a phosphorus atom (phosphasugars)

 
[9c,24]. 

Alternatively, the exocyclic oxygen can be substituted by the 
same set of atoms, giving, respectively, C-glycosides, N-
glycosides, thioglycosides and P-glycosides. A recent review 
by Werz et al. describes the latest advances in the synthesis 
of this kind of carbohydrate mimetics [25]. Elimination or 
substitution of hydroxyl groups by other functional groups, 
introduction of aliphatic or aromatic substituent in the 
structure of the glycomimetic or use different ring sizes are 
others possibilities to mimic carbohydrates. In some cases, 
glycomimetics are generated by the introduction of 
pharmacophoric groups on the sugar backbone or by 
modifications of glycoconjugates where the carbohydrate 
part itself is altered, for example in the case of truncated 
glycans missing a monosaccharide or a larger part of the 
native structure. Replacement of oligosaccharide fragments 
with conformationally designed scaffold elements has also 
been exploited [8b].

 

 Since Nature uses multivalency to improve the affinity and 
specificity in carbohydrate- receptor interaction, glycomimetic 
structures directed towards lectins are often built to suit a 
multivalent inhibition approach [26].  

RATIONAL DESIGN OF UNNATURAL INHIBITORS 

OF LECTINS 

 The identification of unnatural inhibitors of lectin–sugar 
recognition has been approached mostly through rational 
design and synthesis of glycomimetic structures, although, 

more recently, non-carbohydrate lectin binders have also 
been described [27]. In this context, glycomimetics are non-
carbohydrates that attempt to reproduce the 3D structure of 
oligosaccharides' binding determinants and thus to compete 
with the natural ligand for a target lectin. They are often 
composed of a mono- or disaccharide, working as the lectin 
anchor, linked to an aglycone designed to host and orient 
further functionalities for lectin interaction and to impart to 
the molecule some pharmacologically favourable properties, 
such as improved lipophilicity and resistance to hydrolytic 
enzymes. 

 The first step in this process is to understand the SAR 
(Structure Activity Relationship) of the carbohydrate lead, 
because despite the great structural complexity of many 
bioactive oligosaccharides, often only small portions of these 
molecules are actually recognized by their receptors. The 
remaining part appears to act as a scaffold that orients the 
binding determinants in the appropriate conformation and 
provides a connection to the aglycons. The starting point for 
rational design of glycomimetics is often the analysis of the 
crystal structure of oligosaccharide-lectin complexes. If X-
ray structures are not available, homology models can be 
generated [28]. Although oligosaccharides are relatively 
flexible molecules, if compared to other macromolecules, 
certain glycans have highly favoured conformations [29]. In 
particular, vicinal branching appears to impart a significant 
conformational restriction, as seen for instance in 
gangliosides [30] and in the Lewis determinants [31]. Different 
lectins can select different conformations of flexible 
oligosaccharides [32]. Some lectins even select conformations 
that do not appear to be populated by more than 5–10% in 
the free state (ground state) of the ligand. This has clearly a 
consequence on the (low) affinity of such ligands for the 
target lectin, but it can be exploited by mimics that, by chance 
or design, happen to stabilize the bound conformation. 

LECTINS 

 Lectins are proteins that recognize and bind carbohydrate 
conjugates, principally glycolipids and glycoproteins. Lectins 
were initially discovered in plants and in snake venom, but 
subsequently were also identified in bacteria, viruses, 
vertebrates, and mammals. and were recognized as the read-
out machinery of carbohydrate-encoded information [1]. The 
lectin carbohydrate recognition domains (CRD) are often 
able to recognize complex oligosaccharides in a selective 
manner; however, the oligosaccharide recognition determinants 
often consist of only one or two residues, usually located in 
the non-reducing end of the oligosaccharide structure, that 
appear to act as anchors driving the entire glycoconjugate to 
interact with the protein. Several highly conserved types of 
CRD have been identified in animal lectins. They all share a 
pattern of invariants and highly conserved aminoacids 
residues at a characteristic spacing [12f]. Following this 
criteria most of the animal lectins have been classified into 
structural related families and superfamilies like C-type 
lectins, P-type lectins, I-type lectins, etc. The most abundant 
of the animal lectins are the C-type lectins (CTL). The 
majority of the CTLs are large, asymmetric trans-membrane 
glycoproteins, with one or more CRDs attached to a variable 
number of structurally and functionally different polypeptide 
domains. 
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 The interaction between sugar and lectins is driven by 

hydrogen bonds, association of monosaccharide residues 

with metals (for C-type lectins and related calcium-dependent 

proteins), ionic and hydrophobic interactions, that all 

contribute to binding affinity. The energy associated with 

hydrogen bonding in sugar–protein interactions is significantly 

reduced by competition from bulk solvent and by the flexible 

nature of hydroxyl groups, which results in a considerable 

entropic penalty when they become constrained upon 

binding. Sugar CH bonds can engage in stacking interactions 

with protein aromatic side chains, but natural carbohydrates 

usually lack extended hydrophobic areas, often a dominant 

factor in high-affinity receptor–ligand interactions. Hence, 

the affinity of lectins for monovalent carbohydrates is 

typically weak (dissociation constants are in the mM to �M 

range). Most lectins, however, are multimeric and, in general, 

polyvalent presentations of monosaccharides acting as 

binding determinants for a given lectin can be used for 

inhibition, with major affinity increases over the corresponding 

monovalent ligand [5, 33]. Spectacular results have been 

achieved through this approach, particularly for AB5 bacterial 

toxins [34, 19b] and more could be achieved through the 

combination of judicious choice of potent monovalent 

inhibitors with rationally designed polyvalent scaffolds, a 

task that will be significantly simplified by the introduction 

of powerful chemoselective conjugation techniques. 

DESIGN AND SYNTHESIS OF DC-SIGN LIGANDS 

 DC-SIGN (dendritic cell-specific ICAM-3 grabbing 

nonintegrin, CD209) was originally defined as an 

intercellular adhesion molecule-3 (ICAM-3) receptor that 

play an important role in establishing the first contact 

between DC-SIGN and resting T cells [23]. It is a type II 

trans-membrane C-type lectin with a single C-terminal 

Carbohydrate Recognition Domain (CRD) within its 

sequence. In the cellular membrane, DC-SIGN is assembled 

as a tetramer, thanks to an extended coiled-coil region that 

allows simultaneous presentation of four CRDs [35]. DC-

SIGN is one of the dendritic cells specific pathogen-uptake 

receptors and recognizes glycoconjugates on the surface of 

several pathogens, including viruses (HIV, Ebola, 

Cytomegalovirus, Dengue, SARS), [36] bacteria (M. 

tuberculosis, S. pneumoniae), [37] fungi (C. albicans, A. 

fumigatus), [38] and parasites (Leishmania, S. mansoni) [39]. 

It has been proven that this lectin plays a key role in the 

initial steps of infections caused by some of these pathogens. 

In particular, DC-SIGN was brought to attention by the 

group of van Kooyk, who reported that HIV-1 targets DC-

SIGN, but escapes degradation in lytic compartments, thus 

using DCs (dendritic cells) as a Trojan horse to invade the 

host organism [36a]. Inhibition of DC-SIGN is currently 

considered as an interesting new target for the design of anti-

infective agents [40, 8]. The detailed molecular mechanisms 

by which this receptor operates are not known in detail, thus 

effective modulators of DC-SIGN are also needed to help 

clarify the different biological processes in which this 

receptor is involved. The main carbohydrate ligand 

recognized by DC-SIGN is the high mannose glycan, 

(Man)9(GlcNAc)2, a branched oligosaccharide presented in 

multiple copies by several pathogen glycoproteins and 

specifically by the gp120 envelope protein of HIV. DC-

SIGN can also recognize branched fucosylated structures 

bearing terminal galactose residues, such as the Lewis 

antigens. The primary interaction of oligosaccharides and 

DC-SIGN occurs by coordination of a residue of the 

oligosaccharide (often the non-reducing end one) to a Ca
2+

 

binding site exposed to the surface of the protein [41]. X-ray 

data are available for complexes of DC-SIGN carbohydrate 

recognition domain (CRD) with both mannose oligosaccharides 

and Lewis-X [41]. 

 Based on the high-mannose oligosaccharide as a lead 
structure we have reported [42] the design and synthesis of 
glycomimetics compounds that bind to DC-SIGN. It is 
known that high density arrays of unbranched Man�(1,2)Man 
bind to DC-SIGN almost as effectively as the entire Man9 
oligosaccharide [43]. To mimic 1,2-mannobioside the 
pseudo-1,2-mannobioside 1 [44] (Fig. 1) was designed, which 
contains a mannose unit connected to a conformationally 
locked cyclohexanediol (Fig. 1). The latter acts as a mimic of 
a reducing end mannose residue and features a spacer-arm 
terminated with azido or amino functionality, useful to 
generate multivalent DC-SIGN ligands. Design of mimic 1 
was supported by modeling and NMR experiments. STD-
NMR (saturation transfer difference experiments) showed 
that the molecule interacts with DC-SIGN and inhibition of 
Ebola virus entry in DC-SIGN expressing Jurkat cells was 
also shown. The IC50 measured for 1 in this test (0.6 mm) 
was approximately three times lower than that of the natural 
disaccharide Man� �(1,2)Man, which also showed a marked 
cytotoxicity not exhibited by 1. The pseudo-trisaccharide, 2, 
mimicking the linear Man�(1,2)Man�(1,6)Man trisaccharide 
of the D3 arm of Man9, was designed following the same 
concept [45]. This compound inhibits DC-SIGN binding to 
mannosylated BSA (Bovine serum albumin) with an IC50 of 
130 �M (by surface-plasmon resonance, SPR) [46]. The 
affinity for DC-SIGN of both these monovalent ligands is 
too weak for them to represent effective inhibitors of DC-
SIGN-mediated infections and their therapeutic potential is 
limited. However, appropriate levels of affinity have been 
obtained when the ligands were presented in a multimeric 
form [46,47]. The multimeric presentation of the 
glycomimetics 1 and 2 were synthesized by conjugation of 
the monovalent ligands to tetra- and multivalent scaffolds 
based on bis-hydroxymethylpropionic acid as building block. 
Tetravalent presentation of the pseudotrisaccharide 2 in 
dendron 3 (Fig. 2) was shown to inhibit trans infection of T 
lymphocytes by DC-SIGN expressing B-cells, which had 
been pre-incubated with HIV in the presence of 3. Infection 
was abrogated almost totally by 3 in 100 �M concentration, 
and an IC50 ca. 10 �M could be estimated.  

 Additionally, other multivalent compounds were 

synthesized to obtain multivalent glycomimetics conjugates 

with 4-32 copies of the ligands on the surface (3-6, Fig. 2) 

These tetra- and multivalent systems were tested in vitro 

using an infection model based on pseudotyped viral 

particles with the Ebola virus envelope glycoprotein GP1 

[47]. This infection model is exclusively dependent of DC-

SIGN [48]. In these experiments, the tetravalent systems 3 

and 4 were very active in the low micromolar range, and the 
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Fig. (1). Glycomimetics structures 1 and 2 based on the high-mannose oligosaccharide. 

 

MeOOC

MeOOC

O

O

O

OH

HO

HO

O

OH

HO

HO

O

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

N3

N
H

HO

3  

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

N3

MeOOC

MeOOC

O
N
H

O

O

OHHO

HO

HO

4  
 

*O

O

O

MeOOC

MeOOC

O

O

O
OH

HO

HO
HO

15

O
OH

HO
HO

O
N
H

30-32

G3(pseudotri)32

5        

*O

O

O

30-32

G3(pseudodi)32

MeOOC

MeOOC

O
N
H

O

O
OH

HO

HO
HO

13

6        

O

O O

O

O

O
O

O

O

OO

O

O
O

O

O

O
O

O O

HO
HO

O

OHOH

O

O

O

OH
OH

O

OH

OH
O

O

O

OH

OH

O

OH

OH

O

O
O OH

OH

O

OH
OH

O

OO

OH
OH

O

OHOH

O

O

O

HO
HO

O

HO

HO

O

O
O

O O

O

O

O

O

HO
HO O

HO

HO

O

O
OHO

HO

O

HO
HO

O

 
 

Fig. (2). Multivalent presentation of glycomimetics 1 and 2 using dendrons (3, 4) and dendrimers (5, 6) scaffolds. 

 

multivalent systems G3(pseudosugar)32 showed a very strong 

inhibition effect with IC50 in the nanomolar range. On the 

other hand, relatively small differences were observed 

between equivalent constructs obtained from the two selected 

monovalent ligands, even if in a monovalent presentation, 

the pseudotrisaccharide 2 is and order of magnitude more 

active than the pseudodisaccharide 1. A plausible explanation 

for these observations could be the loss of differents binding 

mode of the ligands where they are linked to a scaffold. 

As a consequence, despite the improved affinity of the 
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pseudomannotrioside at the monovalent level, pseudomannobiose 

2 is likely to be an effective lead compound to improve the 

affinity of these multivalent pseudosaccharide compounds.  

 A structural modification leading to improve affinity of 

Man-based ligands was recently reported [49]. Examination 

of the crystal structure of DC-SIGN CRD in complex with 

tetramannoside Man4 (PDB code: 1SL4) [51] suggests he 

presence of a hydrophobic area in the vicinity of the 

mannose-binding Ca-site of the lectin. Replacing the methyl 

ester groups on the cyclohexane scaffolds of 1 with 

secondary amides (Fig. 3) led to a series of compounds the 

bis-amides of 1 (Fig. 3) that displayed low �M activity in the 

inhibition of dendritic cells to a mannan coated plate. Further 

optimization of this lead and characterization of its binding 

activity and selectivity have recently been completed [50].  

 Another approach to prepare mannose mimics working as 
DC-SIGN inhibitors was described by the group of 
Kiessling, who used a shikimic acid-derived glycomimetic 
scaffold of general formula 7 [52] (Fig. 4). The primary 
interaction of mannose residues with DC-SIGN Ca

2+
 binding 

site occurs through the hydroxyl groups at the position 3 and 
4 of the sugar. The shikimic acid derivative prepared by 
Kiessling and co-workers shares the same hydroxyl 
arrangement as mannose at positions 2, 3 and 4. In addition 
to the hydroxyl groups that mimic mannose, the 6-membered 
ring structure generated from shikimic acid presents two 
possible points of diversification a carboxy group and a thiol 
that were exploited to introduce different substituents and to 
synthesize a library of 192 compounds. They were tested 
using a fluorescence-based high-throughput competition 
assay that assessed their ability to compete with immobilized 
mannan for binding the fluorophore-labeled extracellular 
domain of DC-SIGN. The best compound of the library was 
8, which had an IC50 of 11.2 mM, but was found to be more 
selective for DC-SIGN than for mannose-binding protein A 

(MBP-A). Finally, the multivalent ligand 9 was prepared by 
ring-opening metathesis polymerization (ROMP) [53]. The 
IC50 value for the polymer 9 was 2.9 �M, which indicated 
the polymer is 1000-fold more potent than the monomeric 
inhibitor 8.  

 The interaction of DC-SIGN with fucosylated 
oligosaccharides occurs mainly with branched fucosylated 
structures bearing terminal galactose residues, such as the 
Lewis antigens. An X-ray structure is available for the DC-
SIGN-Lewis-X complex [41b]. The fucose residue binds in 
the primary Ca

2+
 site, and the galactose residue is stabilized 

by H-bonding in a second binding area of DC-SIGN. Using 
the 3D structure of Lewis-X as a template, our group 
designed the first monovalent fucose-based artificial ligand 
of DC-SIGN 10 [54] (Fig. 5). The ligand was designed using 
an �-fucosylamide anchor, which can drive the molecule to 
DC-SIGN primary binding site, and connecting it to a 
galactose mimic via a cyclic cis-�-aminoacid linker. Amide 
bonds were chosen to connect the three elements of the 
molecule, in order to achieve synthetic simplicity as well as 
chemical and metabolic stability. A second ligand was also 
prepared by substitution of the complex galactose mimic by 
a simple acetamide group (Fig. 5). DC-SIGN binding studies 
performed by SPR (Surface Plasmon Resonance) biosensor 
showed that compunds 10 and 11a inhibit DC-SIGN better 
than the natural ligand Lewis-X trisaccharide. The small 
difference in affinity between 10 and 11a suggested that the 
galactose mimic fragment in 10 gave a limited contribution 
to the binding interaction.  

 This result revealed that fucose residue of �-
fucosylamides 10 and 11a interact strongly with DC-SIGN 
and suggested to replace the galactose mimic in 10 by other 
residues to optimize the interaction on the secondary binding 
site of the lectin. Following this strategy, a second 
generation of fucose-based ligands was synthesized using as 
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lead compound the fucosylamide 11a. A library of 30 
compounds with the general formula 11 (Fig. 6) was 
prepared by replacing the acetamide group with residues 
featuring aromatic groups and/or hydroxyl groups, amino 
groups or acetamides [55]. Affinity evaluation of the new 
ligands 11 showed that all the molecules synthesized presented 
the same activity independent of the nature of the R group. 

 To examine the effect of the �-aminoacid linker structure 
on the activity of the ligands, a new group of molecules was 
prepared using �-alanine rather than (1S, 2R)-2-amino-
cyclohexanecarboxylic acid as a linker. Interestingly, these 
simple �-fucosyl-�-alanyl amides showed a similar affinity 
for DC-SIGN as Lewis-X and all the compounds of the 
series 11 synthesized. This unexpected results confirmed that 
the (1S, 2R)-2-amino-cyclohexanecarboxylic acid scaffold 
selected for the synthesis of 11 does not enforce optimal 
interaction of the secondary residue with the protein. To 
further explore the role of the �-aminoacid structure in 
defining ligand-protein interaction, the configuration of the 
scaffold was changed systematically and a third set of 
compounds 12-14 was synthesized, where the R fragment 
was kept unchanged and the �-aminoacid configuration was 
systematically permutated. 

 The IC50 values of this set confirmed that the activity of 
most fucosylamides is close to that of Lewis-X. The 
strongest ligands were the hydroxybenzoic acid derivatives 
of 12 (R=3-OH-Ph and 3,5-OH-Ph) with an IC50 of 0.47 
mM. The main feature of these fucose-based compounds is 
the selectivity for DC-SIGN. These molecules block the 
action of DC-SIGN but do not interfere with the action of 
other lectins, such as Langerin, which play an important in 
role in the protections mechanism against HIV. 

CONCLUSIONS 

 In conclusion, we have shown that glycomimetic 
molecules capable of antagonizing the native ligands of 
various medically relevant lectins are being actively 
designed and synthesized by various groups. The general 
approach used in this research takes advantage of the 3D 
structure of known oligosaccharide ligands and of features of 
the available X-ray structures of the lectin complexes to 
design small-molecule monovalent ligands often endowed 
with limited protein affinity, but with improved drug-like 
properties relative to sugars. This approach has allowed to 
identify promising leads which are giving encouraging 
results also in terms of selectivity. Multivalent presentation 
on polymeric scaffolds of these ligands has allowed to obtain 
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high-affinity antagonists. Much work remains to be done to 
allow selection of polyvalent scaffolds and ligands optimal 
in size, shape and valency and finely tuned to the 
supramolecular architecture of individual lectins.  
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